Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
mBio ; : e0067923, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: covidwho-20244869

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the present study, we investigated the characteristics of SARS-CoV-2 within-host diversity of human hosts and its implications for immune evasion using about 2,00,000 high-depth next-generation genome sequencing data of SARS-CoV-2. A total of 44% of the samples showed within-host variations (iSNVs), and the average number of iSNVs in the samples with iSNV was 1.90. C-to-U is the dominant substitution pattern for iSNVs. C-to-U/G-to-A and A-to-G/U-to-C preferentially occur in 5'-CG-3' and 5'-AU-3' motifs, respectively. In addition, we found that SARS-CoV-2 within-host variations are under negative selection. About 15.6% iSNVs had an impact on the content of the CpG dinucleotide (CpG) in SARS-CoV-2 genomes. We detected signatures of faster loss of CpG-gaining iSNVs, possibly resulting from zinc-finger antiviral protein-mediated antiviral activities targeting CpG, which could be the major reason for CpG depletion in SARS-CoV-2 consensus genomes. The non-synonymous iSNVs in the S gene can largely alter the S protein's antigenic features, and many of these iSNVs are distributed in the amino-terminal domain (NTD) and receptor-binding domain (RBD). These results suggest that SARS-CoV-2 interacts actively with human hosts and attempts to take different evolutionary strategies to escape human innate and adaptive immunity. These new findings further deepen and widen our understanding of the within-host evolutionary features of SARS-CoV-2.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019, has evolved rapidly since it was discovered. Recent studies have pointed out that some mutations in the SARS-CoV-2 S protein could confer SARS-CoV-2 the ability to evade the human adaptive immune system. In addition, it is observed that the content of the CpG dinucleotide in SARS-CoV-2 genome sequences has decreased over time, reflecting the adaptation to the human host. The significance of our research is revealing the characteristics of SARS-CoV-2 within-host diversity of human hosts, identifying the causes of CpG depletion in SARS-CoV-2 consensus genomes, and exploring the potential impacts of non-synonymous within-host variations in the S gene on immune escape, which could further deepen and widen our understanding of the evolutionary features of SARS-CoV-2.

2.
Environ Model Assess (Dordr) ; : 1-17, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2296688

RESUMEN

The traditional meaning of ecological efficiency generally considers only the ratio of economic output to environmental input. This paper expands the meaning and the evaluation system of ecological efficiency from the perspective of improving people's livelihoods. Not only are the discharge of wastewater, waste gas, and solid waste included in the undesired output, but the output index also takes full account of the overall development of the economy, innovation, society and the environment from the perspective of high-quality development. Under the assumption of variable returns to scale, a super-efficiency slack-based measure model based on the undesirable output and Malmquist index is introduced to measure the spatial and temporal variation of ecological efficiency of Zhejiang Province in China, and the panel Tobit method is used to study the key factors affecting ecological efficiency. The results include the four following findings: (1) In the past 12 years, the ecological efficiency of Zhejiang Province has steadily increased, except in 2019 and 2020, when seven cities in Zhejiang Province experienced a decline or near stagnation due to the impact of the economic slowdown and the COVID-19 epidemic. (2) The ecological efficiency of Zhejiang demonstrates a severe regional imbalance, showing a high level in the northeast and a low level in the southwest. (3) Malmquist index analysis shows that the improvement of ecological efficiency in Zhejiang Province has shifted from mainly relying on the dual drivers of pure technical efficiency and scale efficiency in the early stage to relying on technological progress in the later stage. (4) Tobit regression analysis shows that industrialization structure, Theil index, and traffic activity have a significant positive effect on ecological efficiency.

3.
Comput Struct Biotechnol J ; 19: 1976-1985, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-2287138

RESUMEN

With the global epidemic of SARS-CoV-2, it is important to effectively monitor the variation, haplotype subgroup epidemic trends and key mutations of SARS-CoV-2 over time. This is of great significance to the development of new vaccines, the update of therapeutic drugs, and the improvement of detection methods. The AutoVEM tool developed in the present study could complete all mutations detections, haplotypes classification, haplotype subgroup epidemic trends and candidate key mutations analysis for 131,576 SARS-CoV-2 genome sequences in 18 h on a 1 core CPU and 2 GB RAM computer. Through haplotype subgroup epidemic trends analysis of 131,576 genome sequences, the great significance of the previous 4 specific sites (C241T, C3037T, C14408T and A23403G) was further revealed, and 6 new mutation sites of highly linked (T445C, C6286T, C22227T, G25563T, C26801G and G29645T) were discovered for the first time that might be related to the infectivity, pathogenicity or host adaptability of SARS-CoV-2. In brief, we proposed an integrative method and developed an efficient automated tool to monitor haplotype subgroup epidemic trends and screen for the candidate key mutations in the evolution of SARS-CoV-2 over time for the first time, and all data could be updated quickly to track the prevalence of previous key mutations and new candidate key mutations because of high efficiency of the tool. In addition, the idea of combinatorial analysis in the present study can also provide a reference for the mutation monitoring of other viruses.

4.
Comput Struct Biotechnol J ; 19: 5029-5038, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-2287137

RESUMEN

In our previous work, we developed an automated tool, AutoVEM, for real-time monitoring the candidate key mutations and epidemic trends of SARS-CoV-2. In this research, we further developed AutoVEM into AutoVEM2. AutoVEM2 is composed of three modules, including call module, analysis module, and plot module, which can be used modularly or as a whole for any virus, as long as the corresponding reference genome is provided. Therefore, it's much more flexible than AutoVEM. Here, we analyzed three existing viruses by AutoVEM2, including SARS-CoV-2, HBV and HPV-16, to show the functions, effectiveness and flexibility of AutoVEM2. We found that the N501Y locus was almost completely linked to the other 16 loci in SARS-CoV-2 genomes from the UK and Europe. Among the 17 loci, 5 loci were on the S protein and all of the five mutations cause amino acid changes, which may influence the epidemic traits of SARS-CoV-2. And some candidate key mutations of HBV and HPV-16, including T350G of HPV-16 and C659T of HBV, were detected. In brief, we developed a flexible automated tool to analyze candidate key mutations and epidemic trends for any virus, which would become a standard process for virus analysis based on genome sequences in the future.

5.
BMC Med Inform Decis Mak ; 22(1): 331, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2196238

RESUMEN

OBJECTIVES: Patients are classified according to the severity of their condition and graded according to the diagnosis and treatment capacity of medical institutions. This study aims to correctly assign patients to medical institutions for treatment and develop patient allocation and medical resource expansion schemes among hospitals in the medical network. METHODS: Illness severity, hospital level, allocation matching benefit, distance traveled, and emergency medical resource fairness were considered. A multi-objective planning method was used to construct a patient allocation model during major epidemics. A simulation study was carried out in two scenarios to test the proposed method. RESULTS: (1) The single-objective model obtains an unbalanced solution in contrast to the multi-objective model. The proposed model considers multi-objective problems and balances the degree of patient allocation matching, distance traveled, and fairness. (2) The non-hierarchical model has crowded resources, and the hierarchical model assigns patients to matched medical institutions. (3) In the "demand exceeds supply" situation, the patient allocation model identified additional resources needed by each hospital. CONCLUSION: Results verify the maneuverability and effectiveness of the proposed model. It can generate schemes for specific patient allocation and medical resource amplification and can serve as a quantitative decision-making tool in the context of major epidemics.

6.
Viruses ; 14(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1699562

RESUMEN

The scale of SARS-CoV-2 infection and death is so enormous that further study of the molecular and evolutionary characteristics of SARS-CoV-2 will help us better understand and respond to SARS-CoV-2 outbreaks. The present study analyzed the epidemic and evolutionary characteristics of haplotype subtypes or regions based on 1.8 million high-quality SARS-CoV-2 genomic data. The estimated ratio of the rates of non-synonymous to synonymous changes (Ka/Ks) in North America and the United States were always more than 1.0, while the Ka/Ks in other continents and countries showed a sharp decline, then a slow increase to 1.0, and a dramatic increase over time. H1 (B.1) with the highest substitution rate has become the most dominant haplotype subtype since March 2020 and has evolved into multiple haplotype subtypes with smaller substitution rates. Many evolutionary characteristics of early SARS-CoV-2, such as H3 being the only early haplotype subtype that existed for the shortest time, the global prevalence of H1 and H1-5 (B.1.1) within a month after being detected, and many high divergent genome sequences early in February 2020, indicate the missing of early SARS-CoV-2 genomic data. SARS-CoV-2 experienced dynamic selection from December 2019 to August 2021 and has been under strong positive selection since May 2021. Its transmissibility and the ability of immune escape may be greatly enhanced over time. This will bring greater challenges to the control of the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Haplotipos , Humanos , Mutación Missense , Filogenia , SARS-CoV-2/genética
7.
Biosens Bioelectron ; 198: 113857, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1549656

RESUMEN

The increasing prevalence of SARS-CoV-2 variants with spike mutations has raised concerns owing to higher transmission rates, disease severity, and escape from neutralizing antibodies. Rapid and accurate detection of SARS-CoV-2 variants provides crucial information concerning the outbreaks of SARS-CoV-2 variants and possible lines of transmission. This information is vital for infection prevention and control. We used a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G. We used type-specific CRISPR RNAs (crRNAs) to identify wild-type (crRNA-W) and mutant (crRNA-M) sequences of SARS-CoV-2. We successfully differentiated mutant variants from wild-type SARS-CoV-2 with a sensitivity of 10-17 M (approximately 6 copies/µL). The assay took just 10 min with the Cas12a/crRNA reaction after a simple RT-PCR using a fluorescence reporting system. In addition, a sensitivity of 10-16 M could be achieved when lateral flow strips were used as readouts. The accuracy of RT-CORDS for SARS-CoV-2 variant detection was 100% consistent with the sequencing data. In conclusion, using the RT-CORDS platform, we accurately, sensitively, specifically, and rapidly detected SARS-CoV-2 variants. This method may be used in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Sistemas CRISPR-Cas , Humanos , Mutación , SARS-CoV-2
8.
Mol Brain ; 13(1):102-102, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-662210

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, and mild cognitive impairment (MCI) is a well-established risk factor for the development of dementia in PD. A growing body of evidence suggests that low expression of glucocerebrosidase (GBA) promotes the transmission of &#945;-synuclein (&#945;-Syn) interpolymers and the progression of PD. However, how GBA mutations affect the pathogenesis of PD via abnormal aggregation of &#945;-Syn is unclear, and no clinically valid PD-MCI genetic markers have been identified. Here, we first located a GBA eQTL, rs12411216, by analysing DHS, eQTL SNP, and transcription factor binding site data using the UCSC database. Subsequently, we found that rs12411216 was significantly associated with PD-MCI (P <0.05) in 306 PD patients by genotyping. In exploring the relationship between rs12411216 and GBA expression, the SNP was found to be associated with GBA expression in 50 PD patients through qPCR verification. In a further CRISPR/Cas9-mediated genome editing module, the SNP was identified to cause a decrease in GBA expression, weaken enzymatic activity and enhance the abnormal aggregation of &#945;-Syn in SH-SY5Y cells. Additionally, using an electrophoretic mobility shift assay, we confirmed that the binding efficiency of transcription factor E2F4 was affected by the rs12411216 SNP. In conclusion, our results showed that rs12411216 regulated GBA expression, supporting its potential role as a PD-MCI genetic biomarker and highlighting novel mechanisms underlying Parkinson's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA